Virulence analysis and effectiveness of new sources of resistance to barley powdery mildew (Blumeria graminis f. sp. hordei) in southwestern regions of Iran

Document Type : Research Paper

Authors

1 Field and Horticultural Crops Research Department, Khorasan-e-Razavi Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Mashhad, Iran.

2 Field and Horticultural Crops Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Shiraz, Iran.

3 Field and Horticultural Crops Research Department, Safiabad Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Dezful, Iran.

4 Field and Horticultural Crops Research Department, Khuzestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Ahvaz, Iran.

Abstract

Barley powdery mildew caused by the biotrophic obligate pathogen, Blumeria graminis f. sp. hordei, is one of the most important foliar diseases in major barley production areas in Iran. To determine the virulence spectrum of the powdery mildew pathogen in southwestern regions of the country and effectiveness of new sources of resistance, barley powdery mildew trap nurseries were established and evaluated under natural field conditions for disease development in three disease prone locations including Zarghan, Ahvaz, and Dezful during 2013-14 to 2017-18 cropping seasons. The trap nurseries consisted of a differential set including the barley cultivar Pallas and 18 near-isogenic ‘Pallas’ lines and a supplementary set including 34 barley cultivars carrying known or unknown resistance gene(s). Our results showed that there is virulence variation in the population of the pathogen in different locations. While the resistance genes Mla6, Mla14, Mla7, Ml(No3), Mla12, Ml(Em2), Mla13 and Ml(Ru3) were effective across the years and locations, the Mlk, Mlh, MlLa and Mlp genes were ineffective in most years and locations. New virulence factors matching Mla6, Mlp, Mlg+MlCP, Mla7 and Mla3 genes were detected. Ineffectiveness of all resistance genes except the recessive mlo allele in Dezful and Zarghan over years indicating that the pathogen population in Dezful and Zarghan are more aggressive than Ahvaz. We concluded that the European mlo carrying barley cultivars and other sources of resistance with a combination of genes, such as Meltan and Escort could be considered as effective sources of powdery mildew resistance to be incorporated in the national barley breeding programs for the southwestern regions of Iran.

Keywords


Aghnoum, R. and Dehghan, M. A. 2018. Evaluation of powdery mildew resistance in genotypes of preliminary, advanced, and elite trials of national barley breeding programs. Final report of research project. AREEO, Tehran, Iran. 58 pp. (in Persian).
 
 
Aghnoum, R., Marcel, T. C., Johrde, A., Pecchioni, N., Schweizer, P. and Niks, R. E. 2010. Basal host resistance of barley to powdery mildew: connecting quantitative trait loci and candidate genes. Mol. Plant Microbe Interact. 23: 91-102.
 
 
Ahmadi, K., Ebadzade, H. R., Hatami, F., Abdeshah, H. and Kazmian, A. 2019. Agriculture statistics (Iran). Volume 1. Field Crops. The Center for Information and Communication Technology. Ministry of Jihad-e-Agriculture. Tehran, Iran. 97 pp.
 
 
Büschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., VanDaelen, R., Vander Lee, T., Diergaarde, P., Groenendijk, J., Topsch, S., Vos, P., Salamini, F. and Schulze-Lefert, P. 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88: 695-705.
 
 
Chelkowski, J., Tyrka, M. and Sobkiewicz, A. 2003. Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers. J. Appl. Genet. 44: 291-309.
 
 
Collins, N. C., Sadanandom, A. and Schulze-Lefert, P. 2002. Genes and molecular mechanisms controlling powdery mildew resistance in barley. pp. 134-145. In: R. R. Bélanger, W. R. Bushnell, A. J. Dik and T. L. W. Carver (eds.) The powdery mildews: A comprehensive treatise. APS Press. St. Paul/Minnesota, USA.
 
 
Czembor, J. H. and Czembor, H. J. 2000. Powdery mildew resistance in selections from Moroccan barley landraces. Phytoparasitica 28: 65-78.
 
 
Dreiseitl, A. 2003. Adaptation of Blumeria graminis f. sp. hordei to barley resistance genes in the Czech Republic in 1971–2000. Plant Soil Environ. 49: 241-248.
 
 
Dreiseitl, A. 2012. Frequency of powdery mildew resistances in spring barley cultivars in Czech variety trials. Plant Protect. Sci. 48: 17-20.
 
 
Dreiseitl, A. 2014. Pathogenic divergence of central European and Australian populations of Blumeria graminis f. sp. hordei. Ann. Appl. Biol. 165: 364-72.
 
 
Dreiseitl, A.  2015. Rare virulences of barley powdery mildew found in aerial populations in the Czech Republic from 2009 to 2014. Czech J. Genet. Plant Breed. 51: 1-8.
 
 
Dreiseitl, A. 2019. Great pathotype diversity and reduced virulence complexity in a Central European population of Blumeria graminis f. sp. hordei in 2015–2017. Eur.  J. Plant Pathol. 153: 801-811.
 
 
Dreiseitl, A., Dinoor, A. and Kosman, E. 2006.Virulence and diversity of Blumeria graminis f. sp. Hordei in Israel and in the Czech Republic. Plant Dis. 90: 1031-1038.
 
 
Dreiseitl, A., Fowler, R. A. and Platz, G. J. 2013. Pathogenicity of Blumeria graminis f. sp. hordei in Australia in 2010 and 2011Australas. Plant Path. 42: 713-721.
 
 
Dreiseitl, A. and Wang, J. 2007. Virulence and diversity of Blumeria graminis f. sp. hordei in East China. Eur. J. Plant Path. 117: 357-368.
 
 
Ershad, J. 2009. The fungi of Iran. Iranian Research Institute of Plant Protection. Tehran, Iran. 529 pp.
 
 
Eyal, Z., Scharen, A. L., Prescott, J. M. and van Ginkel, M. 1987. The septoria diseases of wheat: Concepts and methods of disease management. Mexico, DF.: CIMMYT. 52 pp.
 
 
Giese, H., Holm-Jensen, A. G., Jensen, H. P. and Jensen, J. 1993. Localization of the Laevigatum powdery mildew resistance gene to barley chromosome 2 by the use of RFLP markers. Theor. Appl. Genet. 85: 897-900.
 
 
Glawe, D. A. 2008. The powdery mildews: a review of the world’s most familiar (yet poorly known) plant pathogens. Phytopathol. 46: 27-51.
 
 
Hossain, M. A. and Rahman, M. S. 1993. Pathogenic variability of Erysiphe graminis f. sp. hordei in South Australia, 1981-1985. Aust. J. Agric. Res. 44: 1931-1945.
 
 
Hovmøller, M. S., Caffier, V., Jalli, M., Andersen, O., Besenhofer, G., Czembor, J. H., Dreiseitl, A., Felsenstein, F., Fleck, A., Heinrics, F., Jonsson, R., Limpert,E., Mercer, P., Plesnik, S., Rashal, I., Skinnes, H., Slater, S. and Vronska, O. 2000. The European barley powdery mildew virulence survey and disease nursery 1993-1999. Agronomie 20: 729-743.
 
 
Jørgensen, J. H. 1992. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63: 141-152.
 
 
Jørgensen, H. 1994. Genetics of powdery mildew resistance in barley. Crit. Rev. Plant Sci. 13: 97-119.
 
 
Kokina, I. and Rashal, I. 2012. Results of monitoring of the population of Blumeria graminis f. sp. hordei in Latvia in 2009–2010. Proc. Latv. Acad. Sci. 66:41-47.
 
 
Kokina, I., Statkeviciute, G., Leistrumaite, A. and Rashal, I. 2014. The peculiarities of genetic structure of the Blumeria graminis f. sp. hordei population in Lithuania. Zemdirbyste 101: 419-424.
 
 
Kolster, P., Munk, L., Stolen, O. and Lohde, J. 1986. Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Sci. 26: 903-907.
 
 
Lyngkjær, M. F., Newton, A. C., Atzema, J. L. and Baker, S.J. 2000. The barley mlo gene: an important powdery mildew resistance source. Agronomie 20: 745-756.
 
 
Marcel, T. C., Aghnoum R., Durand, J., Varshney, R. K. and Niks, R. E. 2007. Dissection of the barley 2L1.0 region carrying the ‘Laevigatum’ quantitative resistance gene to leaf rust using near isogenic lines (NIL) and subNIL. Mol. Plant Microbe Interact. 20:1604-1615.
 
 
McDonald, B. A. and Linde, C. 2002. The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124: 163-180.
 
 
Patpour, M., Torabi, M., Afshari, F., Aghnoum, R., Dehghan, M. A., Dadrezaei, S. T. and Ahmadian Moghadam M. S. 2005. Virulence factors of barley powdery mildew pathogen in some regions of Iran and their changes during 2000-2002. Seed and Plant 21: 303-313.
 
 
Rsaliyev, A., Pahratdinova, Z. and Rsaliyev, S. 2017.Characterizing the pathotype structure of barley powdery mildew and effectiveness of resistance genes to this pathogen in Kazakhstan.  BMC Plant Biol. 17 (suppl. 1): 39-49.
 
 
Saari, E. E. and Prescott, J. M. 1975. A scale for appraising the foliar intensity of wheat disease. Plant Dis. Reporter 59: 377–380.
 
 
Tratwal, A. and Bocianowski, J. 2014. Blumeria graminis f. sp. hordei virulence frequency and the powdery mildew incidence on spring barley in the Wielkopolska province. J. Plant Protec. Res. 54: 28–35.
 
 
Tucker, M. A., Jayasena, K., Ellwood, S. R. and Oliver, R. P. 2013. Pathotype variation of barley powdery mildew in Western Australia. Australas. Plant Pathol. 42: 617-623.
 
 
Ullrich, S. E. 2011. Barley: production, improvement and uses. UK: Wiley-Blackwell. 637 pp.
 
 
Yahyaoui, A. H., Reinhold, M. and Scharen, A. L. 1997. Virulence spectrum in populations of the barley powdery mildew pathogen, Erysiphegraminis f. sp. hordei in Tunisia and Morocco in 1992. Plant Pathol. 46: 139-146.
 
 
Zeybek, A., Khan, M., Pandey, A., Gunel, A. Erdogan, O. and Akkaya, M. S. 2017. Genetic structure of powdery mildew disease pathogen Blumeria graminis f. sp. hordei in the barley fields of Cukurova in Turkey. Fresen. Environ. Bull. 26: 906-912.
 
 
Zhu, J. H., Wang, J. M., Jia, Q. J., Yang, J. M., Zhou, Y. J., Lin, F., Hua, W. and Shang, Y. 2010. Pathotypes and genetic diversity of Blumeria graminis f. sp. Hordei in the winter barley regions in China. Agric. Sci. China 9: 1787-1798.