Responses of some Iranian tea [Camellia sinensis (L.) O. Kuntze] clones to drought stress

Document Type : Research Paper

Authors

1 Tea Research Center, Horticultural Science Research Institute, Agricultural Research, Education and Extension Organization, Lahijan, Iran.

2 University of Zanjan, Zanjan, Iran.

Abstract

Drought is one of the most important environmental stresses affecting tea plantation productivity in tea growing areas. Nine field-grown tea [Camellia sinensis (L.) O. Kuntze] clones in the north of Iran were subjected to drought stress by withholding irrigation for 50 days. The effects of drought stress were measured by studying growth and morphological (shoot number, shoot length, shoot fresh weight, length of 5th leaf, width of 5th leaf, green leaf yield), physiological (relative water content), biochemical (proline and total sugar content), and chemical (polyphenol) attributes after 50 days from the time drought stress was imposed. Drought stress resulted in decrease in growth and morphological characteristics, polyphenol content, and an increase in proline and total sugar concentration, that was attributed to reduction of RWC of leaves. Grouping of clones showed that clones 276, 100, and 285 formed drought-tolerant group. These tea clones can be used in the national tea breeding programs for improvement of drought tolerance.

Keywords


Achuo, E. A., Prinsen, E. and Höfte, M. 2006. Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidiumneoly copersici. Plant Pathol. 55 (2): 178-86.
 
 
Andrade, J. L., Larque-Saavedra, A. and Trejo, C. L. 1995. Proline accumulation in leaves of four cultivars of Phaseolus vulgaris L. with different drought resistance. Phyton- International J. Exp. Bot. 57 (2): 149-58.
 
 
Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C. and Lei, W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 6 (9): 2026-32.
 
 
Barrs, H. D. and Weatherley, P. E. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15 (3): 413-28.
 
 
Bates, L. S., Waldren, R. P. and Teare, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39 (1): 205-7.
 
 
Battle, L. A. and Munne-Bosch, S. 2003. Regulation of plant response to drought. Function of plant hormones and antioxidants. pp. 267-285. In: Hemantaranjan,  A. (ed.) Adv. Plant Physiol. Vol 5. Scientific Publishers (India). Jodhpur.
 
 
Carr, M. K. 1977. Changes in the water status of tea clones during dry weather in Kenya. J. Agric. Sci. 89 (2): 297-307.
 
 
Chakraborty, U., Dutta, S. and Chakraborty, B. N. 2000. Changes in biochemical constituents of tea leaves induced by temperature stress. pp. 246-50. In: Muraleedharan N., Kumar R. R. (eds.) Recent advances in plantation crops research. New Delhi: Allied Publishers Limited.
 
 
Chakraborty, U., Dutta, S. and Chakraborty, B. N. 2002. Response of tea plants to water stress. Biol. Plant. 45 (4): 557-62.
 
 
Chen, X. H., Zhuang, C. G., He, Y. F., Wang, L., Han, G. Q., Chen, C. and He, H. Q. 2010. Photosynthesis, yield, and chemical composition of Tieguanyin tea plants (Camellia sinensis (L.) O. Kuntze) in response to irrigation treatments. Agric. Water Manag. 97 (3): 419-25.
 
 
Cheruiyot, E. K., Mumera, L. M., Ng’etich, W. K., Hassanali, A. and Wachira, F. 2007. Polyphenols as potential indicators for drought tolerance in tea (Camellia sinensisL.). Biosci. Biotechnol. Biochem. 71 (9): 2190–2197.
 
 
Cheruiyot, E. K., Mumera, L. M., Ng’etich, W. K., Hassanali, A., Wachira, F. and Wanyoko, J. K. 2008. Shoot epicatechin and epigallocatechin contents respond to water stress in tea [Camellia sinensis (L.) O. Kuntze]. Biosci, Biotechnol. Biochem. 72 (5): 1219-1226.
 
 
Cheruiyot, E. K., Mumera, L. M., Ng'etich, W. K., Hassanali, A. and Wachira, F. N. 2010. High fertilizer rates increase susceptibility of tea to water stress. J. Plant. Nutr. 33 (1): 115-129.
 
 
Cirillo, C., Rouphael, Y., Caputo, R., Raimondi, G. and De Pascale, S. 2014. The influence of deficit irrigation on growth, ornamental quality, and water use efficiency of three potted Bougainvillea genotypes grown in two shapes. HortSci. 49 (10): 1284-1291.
 
 
de la Vega, A., Chapman, S. C. and  Hall, A. J. 2001. Genotype by environment interaction and indirect selection for yield in sunflower I. Two-mode pattern analysis of oil yield and biomass yield across environments in Argentina. Field Crops Res. 27: 17-38.
 
 
Dixon, R. A. and Steele, C. L. 1999. Flavonoids and is a flavonoids–a gold mine for metabolic engineering. Trends Plant Sci. 4 (10): 394-400.
 
 
Gupta, P. K.1999. Estimation of soil moisture and soil moisture constant. pp. 16-49. In: Soil plant, water, and fertilizer analysis. 2nd Edition. Agro-Botanica Publishers & Distributor. Bikanar, India.
 
 
Handique, A. C. and Manivel, L. 1990. Selection criteria for drought tolerance in tea. Assam Rev. Tea News 79: 18-21.
 
 
Hare, P. D., Cress, W. A. and Van Staden, J. 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21 (6): 535-553.
 
 
IPGRI. 1997. Descriptors for Tea (Camellia sinensis). International Plant Genetic Resources Institute.Rome, Italy. 50 pp.
 
 
ISO TC 34/SC 8/WG. 2003. Tea: methods for determination of substances characteristics of green and black tea. I. Determination of total polyphenols in tea: colorimetric method using Folin-Ciocalteu reagent. ISO. Genva.
 
 
Jeyaramraja, P. R., Jayakumar, D., Pius, P. K. and Kumar, R. R. 2003. Relation of altered protein expression with chlorophyll fluorescence in tea under water stress. Indian J. Plant Physiol. 8 (3): 214-218.
 
 
Kamunya, S. M., Wachira, F. N., Lang'at, J., Otieno, W. and Sudoi, V. 2008. Integrated management of root knot nematode (Meloidogyne spp.) in tea (Camellia sinensis) in Kenya. Int. J. Pest. Manag. 54 (2): 129-136.
 
 
Kigalu, J. M. 2007. Effects of planting density and drought on the productivity of tea clones (Camellia sinensis L.): Yield responses. Phys. Chem. Earth Parts A/B/C 32(15-18): 1098-1106.
 
 
Lipiec, J., Doussan, C., Nosalewicz, A. and Kondracka, K. 2013. Effect of drought and heat stresses on plant growth and yield: a review. Int. Agrophys. 27 (4): 463-477.
 
 
Liu, S. C., Yao, M. Z., Ma, C. L., Jin, J. Q., Ma, J. Q., Li, C. F. and Chen, L. 2015. Physiological changes and differential gene expression of tea plant under dehydration and rehydration conditions. Sci. Hortic. 184: 129-141.
 
 
Lu, Z. and Neumann, P. M. 1998. Water-stressed maize, barley and rice seedlings show species diversity in mechanisms of leaf growth inhibition. J. Exp. Bot. 49 (329): 1945-1952.
 
 
Mahajan, S. and Tuteja, N. 2005. Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444 (2): 139-158.
 
 
Majd Salimi, K., Bagheri, F. and Salavatian, S. B. 2010. The economical assessment of irrigation interval on water producing and quality of tea. J. Water and Soil. 24 (5): 845-854.
 
 
Marimuthu, S. and Kumar, R. R. 1998. Drought management in tea: a physiological approach. Bull UPASI Tea Science Department 51: 16-18.
 
 
Maritim, T. K., Kamunya, S. M., Mireji, P., Mwendia, C., Muoki, R. C.,Cheruiyot, E. K. and Wachira, F. N. 2015. Physiological and biochemical response of tea [Camellia sinensis (L.) O. Kuntze] to water-deficit stress. J. Hortic. Sci. Biotechnol. 90 (4): 395-400.
 
 
Matysik, J., Alia Bhalu, B. and Mohanty, P. 2002. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci. 82 (5): 525-532.
 
 
Mengel, K. and Kirkby, E. A. 1996. Principals of plant nutrition. 4th Edition. Panima, New Delhi. 485 pp.
 
 
Netto, L. A., Jayaram, K. M. and Puthur, J. T. 2010. Clonal variation of tea [Camellia sinensis (L.) O. Kuntze] in countering water deficiency. Physiol. Mol. Biol. Plants 16 (4): 359-367.
 
 
Nyirenda, H. E. 1988. Performance of new clones. Tea Res. Found Cent. Afr. Q. Newsl. 91: 4-11.
 
 
Othieno, C. O. 1978. Supplementary irrigation of young clonal tea in Kenya. II. Internal water status. Exp. Agric. 14 (4): 309-316.
 
 
Passioura, J. B. 2002. Environmental biology and crop improvement. Funct. Plant Biol. 29 (5): 537-546.
 
 
Puthur J. T. 2000. Photosynthetic events in Sesbania sesban (L.) Merrill in relation to osmotic stress during different developmental stages. Ph. D. thesis. Jamia Millia Islamia University. New Delhi, India.
 
 
Puthur, J. T. and Rajan, P. 2006. Photosynthetic characteristics and antioxidant mechanism in Vanilla planifolia and exposed to varying intensities of solar radiation. J. Plant. Crops 34 (3): 606-6.
 
 
Rahimi, M., Kordrostami, M. and Mortezavi, M. 2019. Evaluation of tea (Camellia sinensis L.) biochemical traits in normal and drought stress conditions to identify drought tolerant clones. Physiol. Mol. Biol. Plants 25 (1): 59-69.
 
 
Rajasekar, R., Cox, S. and Satyanarayana, N. 1988. Evaluation of certain morphological and physiological factors in tea (Camellia L. SPP.) cultivars under water stress. J. Plant. Crops 18: 83-83.
 
 
Ramegowda, V. and Senthil-Kumar, M. 2015. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J. Plant Physiol. 176: 47-54.
 
 
Rawat, J. M., Rawat, B., Tewari, A., Joshi, S. C., Nandi, S. K., Palni, L. M. S. and Prakash, A. 2017. Alterations in growth, photosynthetic activity and tissue-water relations of tea clones in response to different soil moisture content. Trees 31 (3): 941-952.
 
 
Sabry, S. R. S. 1995. Osmoregulation in spring wheat under drought and salinity stress. J. Genet. Breed. 49: 55-60.
 
 
Saradhi, P. P., Alia Arora, S. and Prasad, K. V. S. K. 1995. Proline accumulates in plants exposed to UV radiation and protects them against UV-induced peroxidation. Biochem. Biophys. Res. Commun. 209 (1): 1-5.
 
 
Saraswathy, V. M., Venkataramanan, D. and Ramaiah, P. K. 1992. Drought tolerance in exotic robustas. J. Plant. Crops. 20: 123-123.
 
 
Sato, F., Yoshioka, H., Fujiwara, T., Higashio, H., Uragami, A. and Tokuda, S. 2004. Physiological responses of cabbage plug seedlings to water stress during low-temperature storage in darkness. Sci. Hortic. 101(4): 349-357.
 
 
Satyanarayana, N. and Cox, S. 1994. Factors influencing productivity of tea in drought. J. Plant. Crops. 22: 87-87.
 
 
Schuppler, U., He, P. H., John, P. C. and Munns, R. 1998. Effect of water stress on cell division and Cdc2-like cell cycle kinase activity in wheat leaves. Plant Physiol. 117 (2): 667-678.
 
 
Sharma, P. and Kumar, S. 2005. Differential display-mediated identification of three drought-responsive expressed sequence tags in tea [Camellia sinensis (L.) O. Kuntze]. J. Biosci. 30 (2): 231-235.
 
 
Singh, H. P., Ravindranath, S. D. and Singh, C. 1999. Analysis of tea shoot catechins: spectrophotometric quantitation and selective visualization on two-dimensional paper chromatograms using diazotized sulfanilamide. J. Agric. Food. Chem. 47 (3): 1041-1045.
 
 
Singh, I. D. and Handique, A. C. 1993. Breeding for resistance in water stress in tea. Two and a Bud. 40 (1): 41-49.
 
 
Slama, I., Messedi, D., Ghnaya, T., Savoure, A. and Abdelly, C. 2006. Effects of water deficit on growth and proline metabolism in Sesuviumportulacastrum. Environ. Exp. Bot. 56 (3): 231-238.
 
 
Stewart, A. J., Chapman, W., Jenkins, G. I., Graham, I., Martin, T. and Crozier, A. 2001. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant Cell Environ. 24 (11): 1189-1197.
 
 
Sudoi, V., Cheramgoi, E., Langat, J. K., Kamunya, S. M. and Wachira, F. N. 2011. Screening of Kenyan tea clones for susceptibility to mite attack at different ecological zones. Int. J. Curr. Res. 3: 328-332.
 
 
Szabados, L. and Savoure, A. 2010. Proline: a multifunctional amino acid. Trends Plant Sci. 15 (2): 89-97.
 
 
Thomas, J., Kumar, R. R. and Pius, P. K. 2004. Screening of tea germplasm under soil moisture stress for productivity. J. Plant. Crops 32: 50-53.
 
 
Upadhyaya, H., Datta, B. K. and Panda, S. K. 2016. Drought induced physiological and biochemical changes in leaves of developing seedlings of tea [Camellia sinensis (L.) O. Kuntze] cultivars. J. Tea Sci. Res. 6 (4): 1-11.
 
 
Upadhyaya, H. and Panda, S. K.2004. Responses of Camellia sinensis to drought and rehydration. Biol. Plant. 48 (4): 597-600.
 
 
Upadhyaya, H., Panda, S. K. and Dutta, B. K. 2008. Variation of physiological and anti-oxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery. Acta Physiol. Plant. 30 (4): 457-468.
 
 
Wijeratne, M. A. and Fordham, R. 1996. Effects of environmental factors on growth and yield of tea (Camellia sinensis L.) in the low-country wet zone of Sri Lanka. Sri Lanka J. Tea Sci. 64: 21-34.
 
 
Xu, Z. Z. and Zhou, G. S. 2007. Photosynthetic recovery of a perennial grass Leymuschinensis after different periods of soil drought. Plant Prod. Sci. 10 (3): 277-285.
 
 
Yoshida, S., Forno, D. A. and Cock, J. H. 1971. Laboratory manual for physiological studies of rice. Laboratory manual for physiological studies of rice. 61 pp.