Genetic analysis of resistance to stripe rust in cross of commercial bread wheat cv. Aflak × Avocet

Document Type : Research Paper


1 Field and Horticultural Crops Research Department, Ardabil Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Moghan, Iran.Research, AREEO, Moghan, Iran.

2 Seed and Plant Improvement Institute, Agricultural Research Education and Extension Organization, Karaj, Iran.


Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is one of the most devastating wheat diseases worldwide. Identification of virulence factors of the pathogenas well as using resistant cultivars are effective approaches in controlling wheat strip rust. Knowledge of genetic basis of resistance to stripe rust in commercial wheat cultivars is an important objective to ensure that diverse resistance genes are deployed in breeding programs.Five bread wheat commercial cultivars were evaluated for stripe rust using 40 Pst races that were collected from different locations in Iran. Among them cultivar Aflak showed seedling resistance to all races and the other cultivars displayed field resistance at the adult plant stage. To study the heritability and genetic basis of resistance to stripe rust inbread wheat cv. Aflak, it was crossed with susceptible cultivar Avocet‘s’ and F1, F2, BC1 and BC2 generations were developed. The generations along with their parents were planted in Randomized Complete Block Design (RCBD) with three replications under greenhouse conditions. The seedlings were inoculated using the race 230E158A+, Yr27+ urediniospores. The resistance components including infection type, latent period, pustule size and pustule density were recordedon single plants of each generation. The results ofthe weighted analysis of variance showed that there were significant (p ≤ 0.01) differencesamong generations for each of the four traits. Generations mean analysis showed that in addition to additive and dominance effects, epistasis, particularly the additive × dominance epistasis also played a significant role in controlling resistance to stripe rust.For all traits, high broad-sense heritability was observed. Moderate to high narrow-sense heritability wasestimated for resistance components


Afshari, F., Nazari, K., Aghaei, M., Najafian, G., Esmaeilzadeh, M., Yazdansepas, A., Khodarahmi, M., Amini, A., Roohparvar, R., Hashamei, M. and Malihipour, A. 2014. The wheat stripe rust pathogen in Iran and achievement of resistant wheat cultivars over the last 10 years. pp. 5. In:Proceedings of the 2nd Int. Wheat Stripe Rust Symposium. Izmir, Turkey.
Afshari, F., Torabi, M. and Malihipour, A. 2003. Appearance of a new race of Puccinia striiformis f. sp. tritici in Iran. Seed and Plant J. 19: 543-546.
Ali, S., Rodriguez-Algaba, J., Thach, T., Sørensen, C. K., Hansen, J. G., Lassen, P., Nazari, K., Hodson, D. P., Justesen, A. F. and Hovmøller, M. S. 2017. Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. Front. Plant Sci. 8: 1057.
Beddow, J. M., Pardey, P. G., Chai, Y., Hurley, T. M., Kriticos, D. J., Braun, H. J., Park, R. F., Cuddy, W. S. and Yonow, T. 2015. Research investment implications of shifts in the global geography of wheat stripe rust. Nat. Plants 1: 15132.
Broers, L. H. M. and Jacobs, T. 1989. The inheritance of host plant effect on latency period of wheat leaf rust in spring wheat. II: number of segregating factors and evidence for transgressive segregation in F3 and F5 generations. Euphytica 44 (3): 207-214.
Chen, X. M. 2005. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can. J. Plant Pathol. 27: 314-337.
Chen, X. M. and Line, R. F. 1995. Gene number and heritability of wheat cultivars with durable, high-temperature, adult-plant (HTAP) resistance and interaction of HTAP and race-specific seedling resistance Puccinia striiformis. Phytopathol. 85: 573-578.
Chen, X. M. and Line, R. F. 1992. Identification of stripe rust resistancegenesinwheatgenotypesusedtodifferentiateNorthAmericanracesofPucciniastrirformis. Phytopathol.72: 1428-1434.
Chen, W., Wellings, C., Chen, X., Kang, Z. and Liu, T. 2014. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol. Plant Pathol. 15: 433–446.
Falconer, C. O. 1960. Introduction to quantitative genetics. Ronald Press. New York. 485 pp.
Falconer, D. S. and Mackay, T. F. C. 1996. Heritability. pp. 160-183. In: Falconer, D. S. and Mackay, T. F. (eds.) Introduction to quantitative genetics.
Gebrewahid, T. W., Zhang, P., Yue Zhou, Yan, X., Xia, X., He, Z., Liu, D. and Li, Z. 2020. QTL mapping of adult plant resistance to stripe rust and leaf rust in a Fuyu 3/Zhengzhou 5389 wheat population. The Crop J. 8: 655–665.
Hallauer, A. R. and Miranda, F. J. B. 1988. Quantitative genetics in maize breeding. 2nd edition. Iowa State University Press/Ames. 468 pp.
Hill, J., Becker, H. C. and Tigerstedt, P. M. A. 1998. Quantitative and ecological aspects of plant breeding. Chapman and Hall, London. 275 pp.
Hovmøller, M. S., Walter, S., Bayles, R. A., Hubbard, A., Flath, K., Sommerfeldt, N., Leconte, M., Czembor, P., Rodriguez-Algaba, J., Thach, T. and Hansen, J. G. 2016. Replacement of the European wheat yellow rust population by new races from the center of diversity in the near-Himalayan region. Plant Pathol. 65: 402–411.
Hovmøller, M. S., Yahyaoui, A. H., Milus, E. A. and Justesen, A. F. 2008. Rapid global spread of two aggressive strains of a wheat rust fungus. Mol. Ecol. 17: 3818–3826.
Hubbard, A., Lewis, C. M., Yoshida, K., Ramirez-Gonzalez, R. H., de Vallavieille-Pope, C., Thomas, J., Kamoun, S., Bayles, R., Uauy, C. and Saunders D. G. 2015. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol. 16: 23.
Hussain, F., Ashraf, M., Hameed, M. A., Hussain, N. and Sial, R. A. 2011. Genetic studies in wheat for leaf rust resistance (Puccinia recondita). Afr. J. Biotechnol. 10 (16): 3051-3054.
Jacobs, T. and Broers, L. H. M. 1989. The inheritance of host plant effect on latency period of wheat leaf rust in spring wheat. I: Estimation of gene action and number of effective factors in F1, F2 and backcross generations. Euphytica 44 (3): 197-206.
Jain, S. K. and Allard, R. W. 1960. Population studies in predominantly self-pollinated species, I. Evidence for heterozygote advantage in a closed population of barley.  Proc. Natl. Acad. Sci. 46 (10): 1371-1377.
Jin, Y., Szabo, L. J. and Carson, M. 2010. Century-old mystery of Puccinia striformis life history solved with the identification of Berberis spp. as an alternate host. Phytopathol. 100: 432-435.
Johnson, R., Stubbs, R. W., Fuchs, E. and Chambrlain, N. H. 1972. Nomenclature for physiologic race of Puccinia striiformis infecting wheat. Trans. Br. Mycol. Soc. 58: 475-480.
Khodarahmi, M., Bihamta, M. R., Mohammadi, S. A. and Majidi Hervan, E. 2007. Inheritance of stripe rust resistance in bread wheat. Iran. J. Crop Sci. 8 (4): 368-378.
Khodarahmi, M., Jalal Kamali, M. R. and Bihamta, M. R. 2009. Inheritance and gene action for resistance to stripe rust in bread wheat. pp. 13-16. In: Proceedings of 12th International Cereal Rust and Powdery Mildews Conference; Antalya, Turkey.
Lee, T. S. and Shaner, G. 1985. Oligogenic inheritance of length of latent period in six slow leaf rusting wheat cultivars. Phytopathol. 75: 636 -643.
Mather, K. and Jinks, J. L. 1982. Biometrical genetics. The Study of Continuous Variation. 3nd edition. Chapman and Hall. London. 412 pp.
McNeal, F. H., Konzak, C. F., Smith, E. P., Tate, W. S. and Russell, T. S. 1971. A uniform system for recording and processing cereal research data. Dept. Agric. Res. Serv. ARS. USA. 34: 121-43.
McIntosh, R. A., Dubcovsky, J., Rogers, W., Morris, C., Appels, R. and Xia, X. 2016. Catalogue of gene symbols for wheat: 2015–2016 supplement. 18 pp.
Milus, E. A., Kristensen, K. and Hovmøller, M. S. 2009. Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathol. 99: 89-94.
Rutkoski, J. E., Heffner, E. L. and Sorrells, M. E. 2010. Genomic selection for durable stem rust resistance. Euphytica 179: 161-173.
Singh, R. P., Singh, P. K., Rutkoski, J., Hodson, D. P., He, X., Jørgensen, L. N., Hovmøller, M. S. and Huerta-Espino, J. 2016. Disease impact on wheat yield potential and prospects of genetic control. Annu. Review of Phytopathol. 54: 303-322.
Singh, R. P., William, H. M., Huerta-Espino, J. and Rosewarne, G. 2004. Wheat rust in Asia: meeting the challenges with old and new technologies. New directions for a diverse planet. pp. 1-13. In:Proceedings of the 4th Int. Crop Sci Cong. Brisbane, Australia.
Steuernagel, B., Periyannan, S. K., Hernandez-Pinzon, I., Witek, K., Rouse, M. N., Yu, G., Hatta, A., Ayliffe, M., Bariana, H., Jones, J. D. G. and Lagudah, E. S. 2016. Rapid cloning of disease resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34: 652-655.
Warner, J. N. 1952. A method for estimation heritability. Argon. J. 44: 427-430.
Wellings, C. R. 2011. Global status of stripe rust: a review of historical and current threats. Euphytica 179: 129-141.
Zadoks, J. C., Chang, T. T. and Konzak, C. F. 1974. A decimal code for the growth stages of cereals. Weed Res. 14: 415-21.