Root biomass and genotypic response in bread wheat (Triticum aestivum L.) under well-watered and drought field conditions

Document Type : Research Paper

Author

Department of Botany and Plant Sciences, University of California, Riverside, California, USA.

10.22092/cbj.2024.364910.1087

Abstract

An optimum root system in wheat might enhance water and nutrient uptake under drought-prone environments without depleting soil moisture, thus improving grain yield. Two experiments were carried out at the University of California, Riverside, under well-watered and droughted field conditions; receiving 412 and 268 mm of water and rain, respectively. Five recombinant inbred lines with root biomass ranging from 1.175 to 7.850 g plant-1 plus a check parent variety, Yecora Rojo, with root biomass of 1.820 g plant-1 were used. Phenological, morphological and agronomic characters were measured. Covariate analysis between grain yield (GY) with number of days from sowing to anthesis (DTA) and to physiological maturity (DTM), grain filling period (GFP), and plant height (PH) were not significant under both irrigation regimes indicating GY was not confounded with these traits. The main effect of irrigation on DTM, GFP, PH, number of tillers (NT) and spikes (NS) per 50 cm, thousand grain weight (TGW), GY, and shoot biomass (SB) was either significant or highly significant, but not on days to anthesis (DTA), number of grains per spike (NGS), and harvest index (HI). The main effect of genotype on the traits measured was highly significant. The effect of genotype × irrigation interaction was relatively low. The mild drought before anthesis and severe drought after anthesis reduced DTM by 5%, GFP by 10%, NS per 50 cm by 24.6%, and TGW by 11% which resulted in 25% and 27% reduction in GY and SB, respectively. Stress tolerance index (STI) of the genotypes calculated based on GY ranged from 0.52 to 0.88. A quadratic pattern of relationship was observed between root biomass measured under well-watered (soil water-holding capacity) glasshouse conditions with GY measured under well-watered (R2 = 0.62) and droughted field conditions (R2 = 0.93). The relationship between root biomass and STI also followed a quadratic pattern (R2 = 0.60). According to the quadratic equations, GY under well-watered and droughted field conditions maximized at 5.806 and 4.575 t ha-1 when root biomass was 1.630 and 3.975 g plant-1, respectively, and STI was highest when root biomass was 3.500 g plant-1. These results indicated that wheat lines with vigorous root system might be better adapted to drought-prone environments.  However, over-sized root biomass might reduce grain yield under both well-watered and drought conditions.

Keywords

Main Subjects


Araus, J. L., Bort, J., Sterduto, P., Villegas, D. and Royo, C. 2003a. Breeding cereals for Mediterranean conditions: ecophysiological clues for biotechnology application. Ann. Appli. Biol. 142: 129-141. DOI: 10.1111/j.1744-7348.2003.tb00238.x
 
 
Araus, J. L., Villegas, D., Aparrico N., García del Moral, L. F., El-Hani, S., Rharrabti, Y., Ferrio, J. P. and Royo C. 2003b. Environmental factors determining carbon isotope discrimination and yield in durum wheat under Mediterranean conditions. Crop Sci. 43: 170-180. DOI: 10.2135/cropsci2003.1700
 
 
Blum, A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 112: 119-123. DOI: 10.1016/j.fcr.2009.03.009
 
 
Blum, A., Shpiler, L., Golan, G. and Mayer, J. 1989. Yield stability and canopy temperature of wheat genotypes under drought-stress. Field Crops Res. 22: 289-296. DOI: 10.1016/0378-4290(89)90028-2
 
 
Bruckner, P. L. and Frohberg, R. C. 1987. Stress tolerance and adaptation in spring wheat. Crop Sci. 27: 31-36. DOI: 10.2135/cropsci1987.0011183X002700010008x
 
 
Dhanda, S. S., Seti, G. S. and Behl, R. K. 2004. Indices of drought tolerance in wheat genotypes at early stages of plant growth. J. Agron. Crop Sci. 190: 6-12. DOI: 10.1111/j.1439-37X.2004.00592.x
 
 
Ehdaie, B. 1995. Variation in water-use efficiency and its components in wheat: II. Pot and field experiments. Crop Sci. 35: 1617-1626. DOI: 10.2135/cropsci1995.0011183X003500060017x
 
 
Ehdaie, B., Alloush, G. A. and Waines, J. G. 2008. Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Res. 106: 34-43. DOI: 10.1016/j.fcr.2007.10.012
 
 

Ehdaie, B., Layne, A. P. and Waines, J. G. 2012. Root system plasticity to drought influences grain yield in bread wheat. Euphytica 186: 219-232. DOI: 10.1007/s10681-011-0585-9

 
 
Ehdaie, B., Maheepala, D. C., Bektaş, H. and Waines, J. G. 2014. Phenotyping and genetic analysis of root and shoot traits of recombinant inbred lines of bread wheat under well-watered conditions. J. Crop Improv. 28: 834-851. DOI: 10.1080/15427528.2014.948107
 
 
Ehdaie, B., Merhaut, D. J., Ahmadian, S., Hoops, A. C., Khuong, T., Layne, A. P. and Waines, J. G. 2010. Root system size influences water-nutrient uptake and nitrate leaching potential in wheat. J. Agron. Crop Sci. 196: 455-466. DOI: 10.1111/j.1439-037X.2010.00433.x
 
 
Ehdaie, B. and Waines, J. G. 2006. Determination of a chromosome segment influencing rooting ability in wheat-rye 1BS-1RS recombinant lines. J. Genet. Breed. 60: 71-76.
 
 
Ehdaie, B., Waines, J. G. and Hall, A. E. 1988. Differential responses of landrace and improved spring wheat genotypes to stress environments. Crop Sci. 28: 838-842. DOI: 10.2135/cropsci1988.0011183X002800050024x
 
 
Ehdaie, B., Whitkus, R. W. and Waines, J. G. 2003. Root biomass, water-use efficiency, and performance of wheat-rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’. Crop Sci. 43: 710-717. DOI: 10.2135/cropsci2003.0710
 
 
Fernandez, G. C. J. 1992. Effective selection criteria for assessing plant stress tolerance. pp. 257-270. In: Adaptation of Food Crops to Temperature and Water Stress: Proceeding of an International Symposium, Taiwan, 13-10 August 1992.
DOI: 10.22001/wvc.72511
 
 
Gallagher, J. N., Biscoe, P. V. and Scott, R. K. 1975. Barley and its environment. V. Stability and grain weight. J. Appl. Ecol. 12: 319-336. DOI: 10.2307/2401735
 
 
Gregory, P. J., Bengough, A. G., Grinev, D., Schmidt, S., Thomas, W. T. B., Wojciechowski, T. and Young, I. M. 2009. Root phenomics of crops: opportunities and challenges. Funct. Plant Biol. 36: 922-929. DOI: 10.1071/FP09150
 
 
Hurd, E. A. 1968. Growth of roots of seven varieties of spring wheat at high and low moisture levels. Agron. J. 60: 201-205. DOI: 10.2134/agronj1968.00021962006000020018x
 
 
Hurd, E. A. 1974. Phenotype and drought tolerance in wheat. Agric. Meteorol. 14: 39-55. DOI: 10.1016/B978-0-444-41273-7.50010-6
 
 
Inagaki, M. N., Mori, M. and Nachit, M. M. 2010. Yield comparison for synthetic-derived bread wheat genotypes with different water uptake ability under increasing water deficits. Cereal Res. Commun. 38: 497-505. DOI: 10.1556/CRC.38.2010.4.6
 
 
Izzi, G., Farahani, H. J., Bruggeman, A. and Oweis, T. Y. 2008. In-season wheat root growth and soil water extraction in the Mediterranean environment of northern Syria. Agri. Water Manage. 95: 259-270. DOI: 10.1016/j.agwat.2007.10.008
 
 
Jain, N., Singh, G. P., Yadav, R., Pandey, R., Ramya, P., Shine, M. B., Pandey, V. C., Rai, N., Jha, J. and Prabhu, K. V, 2014. Root trait characteristics and genotypic response in wheat under different water regimes. Cereal Res. Commun. 42: 426-438. DOI: 10.1556/CRC.42.2014.3.6
 
 
Kashiwagi, J., Morito, Y., Jitsuyama, Y., An, P., Inoue, T. and Inagaki, M. 2015. Effects of root water uptake efficiency on soil water utilization in wheat (Triticum aestivum L.) under severe drought environments. J. Agro. Crop Sci. 201 (3):161-172.  DOI: 10.1111/Jan. 12092
 
 
Kirkegaard, J. A., Lilley, M., Howe, N. G. and Graham, J. M. 2007. Impact of subsoil water use on wheat yield. Aust. J. Agric. Res. 58: 303-315. DOI: 10.1071/AR06285
 
 
Landi, P., Albrecht, B., Giuliani, M. M. and Sanguineti, M. S. 1998. Seedling characteristics in hydroponic culture and field performance of maize genotypes with different resistance to root lodging. Maydica 43: 111-116.
 
 
Landi, P., Sanguineti, M. C., Darrah, L., Giuliani, M., Salvi, S. and Tuberosa, R. 2002, Detection of QTLs for vertical root pulling resistance in maize and overlaps with QTLs for root traits in hydroponics and for grain yield at different water regimes. Maydica 47: 233-243.
 
 
Liao, M., Palta, J. A. and Fillery I. R. P. 2006. Root characteristics of vigorous wheat improve early nitrogen uptake. Aust. J. Agric. Res. 57: 1097-1107. DOI: 10.1071/AR05439
 
 
Løes, A. K. and Gahoonia, T. S. 2004. Genetic variation in specific root length in Scandinavian wheat and barley accessions. Euphytica 137: 243-249. DOI: 10.1023/B:EUPH.0000041587.02009.2e
 
 
Lopes, M. S. and Reynolds, M. P. 2010. Partitioning of assimilates to deeper roots is associated with cooler canopies and increases yield under drought in wheat. Funct. Plant Biol. 37: 147-156. DOI: 10.1071/FP09121
 
 
Maheepala, D. C., Ehdaie, B. and Waines, J. G. 2015. Yield performance of wheat isolines with different dosages of short arm of rye chromosome 1. J. Agron. Crop Sci. 21: 152-160. DOI: 10.1111/jac.12077
 
 
Manschadi, A. M., Christopher, J., de Voil, P. and Hammer, G. H. 2006. The role of root architectural traits in adaptation of wheat to water-limited environment. Funct. Plant Biol. 33: 823-837. DOI: 10.1071/FP06055
 
 
Manschadi, A. M., Hammer, G. H., Christopher, J. T. and de Voil, P. 2008. Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil 303: 115-129. DOI: 10.1007/s11104-007-9492-1
 
 
Manske, G. G. B. and Vlek, P. L. G. 2002. Root architecture - wheat as a model plant. pp. 249-259. In: Y. Waisel, and A. Eshel (eds.) Plant Roots: The Hidden Half, Marcel Dekker, Inc., New York. DOI: 10.1201/9780203909423.ch15
 
 
Mian, M. A. R., Nafziger, E. D., Kolb, F. L. and Teyker, R. H. 1993. Root growth of wheat genotypes in hydroponic culture and in greenhouse under different soil moisture regimes. Crop Sci. 33: 283-286. DOI: 10.2135/cropsci1993.0011183X003300020014x
 
 
Mian, M. A. R., Nafziger, E. D., Kolb, F. L. and Teyker, R. H. 1994. Root size and distribution of field-grown wheat genotypes. Crop Sci. 34: 810-812. DOI: 10.2135/cropsci1994.0011183X003400030037x
 
 
Moghaddam, M., Ehdaie, B. and Waines, J. G. 1997. Genetic variation and interrelationships of agronomic characters in landraces of bread wheat from southeastern Iran. Euphytica 95: 361-369.
 
 
Nakamoto, T. and Oyanagi, A. 1994. The direction of growth of seminal roots of Triticum aestivum L. and experimental modification thereof. Ann. Bot. 73: 363-367. DOI: 10.1006/anbo.1994.1045
 
 
O’Brien, L. 1979. Genetic variability of root growth in wheat (Triticum aestivum L.). Aust. J. Agric. Res. 30: 587-595.
 
 
O’Tool, J. C. and Oyanagi, W. L. 1987. Genotypic variation in crop plant root systems. Adv. Agron. 41: 91-145. DOI: 10.1016/S0065-2113(08)60803-2
 
 
Palta, J. A., Chen, X., Milroy, S. P., Rebetzke, G. J., Dreccer, M. F. and Watt, M. 2011. Large root systems: are they useful in adapting wheat to dry environments? Funct. Plant Biol. 38: 347-354. DOI: 10.1071/FP11031
 
 
Passioura, J. B. 1977. Grain yield, harvest index, and water use of wheat. J. Aust. Inst. Agric. Sci. 43: 117-120.
 
 
Placido, D. F., Campbell, M. T., Folsome, J. J., Cui, X., Kruger, G. R., Baenziger, P. S. and Walia, H. 2013. Introgression of novel traits from a wild wheat relative improves drought adaptation. Plant Physiol. 161: 1806-1819. DOI: 10.1104/pp.113.214262
 
 
Reynolds, M. P., Singh, R. P., Ibrahim, A., Ageeb, O. A. A., Larqué-Saavedra, A.and Quick, J. S. 1998. Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica 100: 85-94.
 
 
Reynolds, M. P., Saint, Pierre C., Saad, R. S. I., Vargas, M. and Condon, A. G. 2007. Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Sci. 47: 172-189. DOI: 10.2135/cropsci2007.10.0022IPBS
 
 
Richards, R. A. and Passioura, J. B. 1989. A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Aust. J. Agric. Res. 40: 943-950.
 
 
Sanguineti, M. C., Giuliani, M. M., Govi, G., Tuberosa, R. and Landi, P. 1998. Root and shoot traits of maize inbred lines grown in the field and in hydroponic culture and their relationships with root lodging. Maydica 43: 211-216.
 
 
Siddique, K. H. M., Belford, R. K. and Tennant, D. 1990. Root: shoot ratios of old and modern, tall and semi-dwarf wheats in a Mediterranean environment. Plant Soil 121: 89-98.
 
 
Steel, R. G. D., Torrie, J. H. and Dickey, D. A. 1997. Principles and procedures of statistics: a biometrical approach. McGraw-Hill, New York, NY, USA. 666 pp.
 
 
Tuberosa, R., Sanguineti, M. C., Landi, P., Giuliani, M. M., Salvi, S. and Conti, S. 2002. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QLTs for grain yield in the field at two water regimes. Plant Mol. Biol. 48: 697-712. DOI: 10.1023/A:1014897607670
 
 
Watt, M., Moosavi, S., Cunningham, S. C., Kirkegaard, J. A., Rebetzke, G. J. and Richards, R. A. 2013. A rapid, controlled-environment seedling root screen for wheat correlates well with deep rooting depth at vegetative, but not reproductive, stages at two field sites. Ann. Bot. 112: 447-455. DOI: 10.1093/aob/mct122.